

Welcome to Drydock’s documentation!

Drydock is a python REST orchestrator to translate a YAML host topology to a
provisioned set of hosts and provide a set of cloud-init post-provisioning
instructions.

User’s Guide

Drydock Configuration Guide

	Installing Drydock in a Dev Environment
	Bootstrap Kubernetes

	Deploy Drydock and Dependencies

	Load Site

	Configuring Drydock
	Keystone Integration

	MaaS Integration

	Sample Configuration File

	Sample Policy File

	Exceptions Guide
	Drydock Exceptions

API Documentation

	Drydock API

	Tasks

	Boot Actions

	Validate Design

Client Documentation

	drydock_client - client for drydock_provisioner RESTful API

Topology Documentation

	Authoring Site Topology

Installing Drydock in a Dev Environment

Bootstrap Kubernetes

You can bootstrap your Helm-enabled Kubernetes cluster via the Openstack-Helm
AIO [https://openstack-helm.readthedocs.io/en/latest/install/developer/all-in-one.html]
or the Promenade [https://github.com/att-comdev/promenade] tools.

Deploy Drydock and Dependencies

Drydock is most easily deployed using Armada to deploy the Drydock
container into a Kubernetes cluster via Helm charts. The Drydock chart
is in aic-helm [https://github.com/att-comdev/aic-helm]. It depends on
the deployments of the MaaS [https://github.com/openstack/openstack-helm-addons]
chart and the Keystone [https://github.com/openstack/openstack-helm] chart.

A integrated deployment of these charts can be accomplished using the
Armada [https://github.com/att-comdev/armada] tool. An example integration
chart can be found in the
UCP-Integration [https://github.com/att-comdev/ucp-integration] repo in the
./manifests/basic_ucp directory.

$ git clone https://github.com/att-comdev/ucp-integration
$ sudo docker run -ti -v $(pwd):/target -v ~/.kube:/armaada/.kube quay.io/attcomdev/armada:master apply --tiller-host <host_ip> --tiller-port 44134 /target/manifests/basic_ucp/ucp-armada.yaml
$ # wait for all pods in kubectl get pods -n ucp are 'Running'
$ KS_POD=$(kubectl get pods -n ucp | grep keystone | cut -d' ' -f1)
$ TOKEN=$(docker run --rm --net=host -e 'OS_AUTH_URL=http://keystone-api.ucp.svc.cluster.local:80/v3' -e 'OS_PASSWORD=password' -e 'OS_PROJECT_DOMAIN_NAME=default' -e 'OS_PROJECT_NAME=service' -e 'OS_REGION_NAME=RegionOne' -e 'OS_USERNAME=drydock' -e 'OS_USER_DOMAIN_NAME=default' -e 'OS_IDENTITY_API_VERSION=3' kolla/ubuntu-source-keystone:3.0.3 openstack token issue -f shell | grep ^id | cut -d'=' -f2 | tr -d '"')
$ docker run --rm -ti --net=host -e "DD_TOKEN=$TOKEN" -e "DD_URL=http://drydock-api.ucp.svc.cluster.local:9000" -e "LC_ALL=C.UTF-8" -e "LANG=C.UTF-8" $DRYDOCK_IMAGE /bin/bash

Load Site

To use Drydock for site configuration, you must craft and load a site topology
YAML. An example of this is in ./examples/designparts_v1.0.yaml.

Documentation on building your topology document is at Authoring Site Topology.

Use the Drydock CLI create a design and load the configuration

drydock design create
drydock part create -d <design_id> -f <yaml_file>

Use the CLI to create tasks to deploy your site

drydock task create -d <design_id> -a verify_site
drydock task create -d <design_id> -a prepare_site
drydock task create -d <design_id> -a prepare_node
drydock task create -d <design_id> -a deploy_node

A demo of this process is available at https://asciinema.org/a/133906

Configuring Drydock

Drydock uses an INI-like standard oslo_config file. A sample
file can be generated via tox:

$ tox -e genconfig

Customize your configuration based on the information below

Keystone Integration

Drydock requires a service account to use for validating client
tokens:

$ openstack domain create 'ucp'
$ openstack project create --domain 'ucp' 'service'
$ openstack user create --domain ucp --project service --project-domain 'ucp' --password drydock drydock
$ openstack role add --project-domain ucp --user-domain ucp --user drydock --project service admin

The service account must then be included in the drydock.conf:

[keystone_authtoken]
auth_uri = http://<keystone_ip>:5000/v3
auth_version = 3
delay_auth_decision = true
auth_type = password
auth_section = keystone_authtoken_password
auth_url = http://<keystone_ip>:5000
project_name = service
project_domain_name = ucp
user_name = drydock
user_domain_name = ucp
password = drydock

MaaS Integration

Drydock uses Canonical MaaS to provision new nodes. This requires a running MaaS
instance and providing Drydock with the address and credentials. The MaaS API
enforces authentication via a API key generated by MaaS and used to sign API calls.
Configure Drydock with the MaaS API URL and a valid API key.:

[maasdriver]
maas_api_url = http://<maas_ip>:<maas_port>/MAAS
maas_api_key = <valid API key>

Sample Configuration File

The following is a sample Drydock configuration for adaptation and use. It is
auto-generated from Drydock when this documentation is built, so
if you are having issues with an option, please compare your version of
Patrole with the version of this documentation.

The sample configuration can also be viewed in file form.

[DEFAULT]

#
From drydock_provisioner
#

Polling interval in seconds for checking subtask or downstream status (integer
value)
#poll_interval = 10

How long a leader has to check-in before leadership can be usurped, in seconds
(integer value)
#leader_grace_period = 300

How often will an instance attempt to claim leadership, in seconds (integer
value)
#leadership_claim_interval = 30

[database]

#
From drydock_provisioner
#

The URI database connect string. (string value)
#database_connect_string = <None>

[keystone_authtoken]

#
From drydock_provisioner
#

Authentication URL (string value)
#auth_url = <None>

Domain ID to scope to (string value)
#domain_id = <None>

Domain name to scope to (string value)
#domain_name = <None>

Project ID to scope to (string value)
Deprecated group/name - [keystone_authtoken]/tenant-id
#project_id = <None>

Project name to scope to (string value)
Deprecated group/name - [keystone_authtoken]/tenant-name
#project_name = <None>

Domain ID containing project (string value)
#project_domain_id = <None>

Domain name containing project (string value)
#project_domain_name = <None>

Trust ID (string value)
#trust_id = <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both
the user and project domain in v3 and ignored in v2 authentication. (string
value)
#default_domain_id = <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for
both the user and project domain in v3 and ignored in v2 authentication.
(string value)
#default_domain_name = <None>

User id (string value)
#user_id = <None>

Username (string value)
Deprecated group/name - [keystone_authtoken]/user-name
#username = <None>

User's domain id (string value)
#user_domain_id = <None>

User's domain name (string value)
#user_domain_name = <None>

User's password (string value)
#password = <None>

#
From keystonemiddleware.auth_token
#

Complete "public" Identity API endpoint. This endpoint should not be an
"admin" endpoint, as it should be accessible by all end users. Unauthenticated
clients are redirected to this endpoint to authenticate. Although this
endpoint should ideally be unversioned, client support in the wild varies.
If you're using a versioned v2 endpoint here, then this should *not* be the
same endpoint the service user utilizes for validating tokens, because normal
end users may not be able to reach that endpoint. (string value)
#auth_uri = <None>

API version of the admin Identity API endpoint. (string value)
#auth_version = <None>

Do not handle authorization requests within the middleware, but delegate the
authorization decision to downstream WSGI components. (boolean value)
#delay_auth_decision = false

Request timeout value for communicating with Identity API server. (integer
value)
#http_connect_timeout = <None>

How many times are we trying to reconnect when communicating with Identity API
Server. (integer value)
#http_request_max_retries = 3

Request environment key where the Swift cache object is stored. When
auth_token middleware is deployed with a Swift cache, use this option to have
the middleware share a caching backend with swift. Otherwise, use the
``memcached_servers`` option instead. (string value)
#cache = <None>

Required if identity server requires client certificate (string value)
#certfile = <None>

Required if identity server requires client certificate (string value)
#keyfile = <None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections.
Defaults to system CAs. (string value)
#cafile = <None>

Verify HTTPS connections. (boolean value)
#insecure = false

The region in which the identity server can be found. (string value)
#region_name = <None>

Directory used to cache files related to PKI tokens. (string value)
#signing_dir = <None>

Optionally specify a list of memcached server(s) to use for caching. If left
undefined, tokens will instead be cached in-process. (list value)
Deprecated group/name - [keystone_authtoken]/memcache_servers
#memcached_servers = <None>

In order to prevent excessive effort spent validating tokens, the middleware
caches previously-seen tokens for a configurable duration (in seconds). Set to
-1 to disable caching completely. (integer value)
#token_cache_time = 300

Determines the frequency at which the list of revoked tokens is retrieved from
the Identity service (in seconds). A high number of revocation events combined
with a low cache duration may significantly reduce performance. Only valid for
PKI tokens. (integer value)
#revocation_cache_time = 10

(Optional) If defined, indicate whether token data should be authenticated or
authenticated and encrypted. If MAC, token data is authenticated (with HMAC)
in the cache. If ENCRYPT, token data is encrypted and authenticated in the
cache. If the value is not one of these options or empty, auth_token will
raise an exception on initialization. (string value)
Allowed values: None, MAC, ENCRYPT
#memcache_security_strategy = None

(Optional, mandatory if memcache_security_strategy is defined) This string is
used for key derivation. (string value)
#memcache_secret_key = <None>

(Optional) Number of seconds memcached server is considered dead before it is
tried again. (integer value)
#memcache_pool_dead_retry = 300

(Optional) Maximum total number of open connections to every memcached server.
(integer value)
#memcache_pool_maxsize = 10

(Optional) Socket timeout in seconds for communicating with a memcached
server. (integer value)
#memcache_pool_socket_timeout = 3

(Optional) Number of seconds a connection to memcached is held unused in the
pool before it is closed. (integer value)
#memcache_pool_unused_timeout = 60

(Optional) Number of seconds that an operation will wait to get a memcached
client connection from the pool. (integer value)
#memcache_pool_conn_get_timeout = 10

(Optional) Use the advanced (eventlet safe) memcached client pool. The
advanced pool will only work under python 2.x. (boolean value)
#memcache_use_advanced_pool = false

(Optional) Indicate whether to set the X-Service-Catalog header. If False,
middleware will not ask for service catalog on token validation and will not
set the X-Service-Catalog header. (boolean value)
#include_service_catalog = true

Used to control the use and type of token binding. Can be set to: "disabled"
to not check token binding. "permissive" (default) to validate binding
information if the bind type is of a form known to the server and ignore it if
not. "strict" like "permissive" but if the bind type is unknown the token will
be rejected. "required" any form of token binding is needed to be allowed.
Finally the name of a binding method that must be present in tokens. (string
value)
#enforce_token_bind = permissive

If true, the revocation list will be checked for cached tokens. This requires
that PKI tokens are configured on the identity server. (boolean value)
#check_revocations_for_cached = false

Hash algorithms to use for hashing PKI tokens. This may be a single algorithm
or multiple. The algorithms are those supported by Python standard
hashlib.new(). The hashes will be tried in the order given, so put the
preferred one first for performance. The result of the first hash will be
stored in the cache. This will typically be set to multiple values only while
migrating from a less secure algorithm to a more secure one. Once all the old
tokens are expired this option should be set to a single value for better
performance. (list value)
#hash_algorithms = md5

Authentication type to load (string value)
Deprecated group/name - [keystone_authtoken]/auth_plugin
#auth_type = <None>

Config Section from which to load plugin specific options (string value)
#auth_section = <None>

[logging]

#
From drydock_provisioner
#

Global log level for Drydock (string value)
#log_level = INFO

Logger name for the top-level logger (string value)
#global_logger_name = drydock_provisioner

Logger name for OOB driver logging (string value)
#oobdriver_logger_name = ${global_logger_name}.oobdriver

Logger name for Node driver logging (string value)
#nodedriver_logger_name = ${global_logger_name}.nodedriver

Logger name for API server logging (string value)
#control_logger_name = ${global_logger_name}.control

[maasdriver]

#
From drydock_provisioner
#

The API key for accessing MaaS (string value)
#maas_api_key = <None>

The URL for accessing MaaS API (string value)
#maas_api_url = <None>

Polling interval for querying MaaS status in seconds (integer value)
#poll_interval = 10

[oslo_policy]

#
From oslo.policy
#

The file that defines policies. (string value)
Deprecated group/name - [DEFAULT]/policy_file
#policy_file = policy.json

Default rule. Enforced when a requested rule is not found. (string value)
Deprecated group/name - [DEFAULT]/policy_default_rule
#policy_default_rule = default

Directories where policy configuration files are stored. They can be relative
to any directory in the search path defined by the config_dir option, or
absolute paths. The file defined by policy_file must exist for these
directories to be searched. Missing or empty directories are ignored. (multi
valued)
Deprecated group/name - [DEFAULT]/policy_dirs
#policy_dirs = policy.d

[plugins]

#
From drydock_provisioner
#

Module path string of a input ingester to enable (string value)
#ingester = drydock_provisioner.ingester.plugins.yaml.YamlIngester

List of module path strings of OOB drivers to enable (list value)
#oob_driver = drydock_provisioner.drivers.oob.pyghmi_driver.PyghmiDriver

Module path string of the Node driver to enable (string value)
#node_driver = drydock_provisioner.drivers.node.maasdriver.driver.MaasNodeDriver

Module path string of the Network driver enable (string value)
#network_driver = <None>

[pyghmi_driver]

#
From drydock_provisioner
#

Polling interval in seconds for querying IPMI status (integer value)
#poll_interval = 10

[timeouts]

#
From drydock_provisioner
#

Fallback timeout when a specific one is not configured (integer value)
#drydock_timeout = 5

Timeout in minutes for creating site network templates (integer value)
#create_network_template = 2

Timeout in minutes for creating user credentials (integer value)
#configure_user_credentials = 2

Timeout in minutes for initial node identification (integer value)
#identify_node = 10

Timeout in minutes for node commissioning and hardware configuration (integer
value)
#configure_hardware = 30

Timeout in minutes for configuring node networking (integer value)
#apply_node_networking = 5

Timeout in minutes for configuring node storage (integer value)
#apply_node_storage = 5

Timeout in minutes for configuring node platform (integer value)
#apply_node_platform = 5

Timeout in minutes for deploying a node (integer value)
#deploy_node = 45

Timeout in minutes between deployment completion and the all boot actions
reporting status (integer value)
#bootaction_final_status = 15

Sample Policy File

The following is a sample Drydock policy file for adaptation and use. It is
auto-generated from Drydock when this documentation is built, so
if you are having issues with an option, please compare your version of
Drydock with the version of this documentation.

The sample policy file can also be viewed in file form.

Actions requiring admin authority
#"admin_required": "role:admin or is_admin:1"

Get task status
GET /api/v1.0/tasks
GET /api/v1.0/tasks/{task_id}
#"physical_provisioner:read_task": "role:admin"

Create a task
POST /api/v1.0/tasks
#"physical_provisioner:create_task": "role:admin"

Create validate_design task
POST /api/v1.0/tasks
#"physical_provisioner:validate_design": "role:admin"

Create verify_site task
POST /api/v1.0/tasks
#"physical_provisioner:verify_site": "role:admin"

Create prepare_site task
POST /api/v1.0/tasks
#"physical_provisioner:prepare_site": "role:admin"

Create verify_nodes task
POST /api/v1.0/tasks
#"physical_provisioner:verify_nodes": "role:admin"

Create prepare_nodes task
POST /api/v1.0/tasks
#"physical_provisioner:prepare_nodes": "role:admin"

Create deploy_nodes task
POST /api/v1.0/tasks
#"physical_provisioner:deploy_nodes": "role:admin"

Create destroy_nodes task
POST /api/v1.0/tasks
#"physical_provisioner:destroy_nodes": "role:admin"

Read build data for a node
GET /api/v1.0/nodes/{nodename}/builddata
#"physical_provisioner:read_build_data": "role:admin"

Read loaded design data
GET /api/v1.0/designs
GET /api/v1.0/designs/{design_id}
#"physical_provisioner:read_data": "role:admin"

Load design data
POST /api/v1.0/designs
POST /api/v1.0/designs/{design_id}/parts
#"physical_provisioner:ingest_data": "role:admin"

et health status
GET /api/v1.0/health/extended
#"physical_provisioner:health_data": "role:admin"

Validate site design
POST /api/v1.0/validatedesign
#"physical_provisioner:validate_site_design": "role:admin"

Exceptions Guide

Contents:

	Drydock Exceptions
	API Errors

	Bootaction Errors

	Client Errors

	Design Errors

	Driver Errors

	Orchestrator Errors

	BuildData Errors

Drydock Exceptions

API Errors

	Exception Name

	Description

	ClientError

	
	
exception drydock_provisioner.error.ClientError(msg, code=500)

	Bases: drydock_provisioner.error.ApiError

Message: Error - recieved <status code>: <details>

Code: 500

Troubleshoot: Coming Soon

	InvalidFormat

	
	
exception drydock_provisioner.error.InvalidFormat(msg, code=400)

	Bases: drydock_provisioner.error.ApiError

Message: Invalid JSON in body: <path>

Code: 400

Troubleshoot: Coming Soon

Bootaction Errors

	Exception Name

	Description

	InvalidAssetLocation

	
	
exception drydock_provisioner.error.InvalidAssetLocation

	Bases: drydock_provisioner.error.BootactionError

Message: Unable to resolve asset reference <various>.

Troubleshoot:

	PipelineFailure

	
	
exception drydock_provisioner.error.PipelineFailure

	Bases: drydock_provisioner.error.BootactionError

Message: Error when running bootaction pipeline segment <various>.

Troubleshoot:

	UnknownPipelineSegment

	
	
exception drydock_provisioner.error.UnknownPipelineSegment

	Bases: drydock_provisioner.error.BootactionError

Message: Bootaction pipeline segment <various> unknown.

Troubleshoot:

Client Errors

	Exception Name

	Description

	ClientForbiddenError

	
	
exception drydock_provisioner.error.ClientForbiddenError(msg)

	Bases: drydock_provisioner.error.ClientError

Message: Forbidden access to <url>.

Code: 403

Troubleshoot: Coming Soon

	ClientUnauthorizedError

	
	
exception drydock_provisioner.error.ClientUnauthorizedError(msg)

	Bases: drydock_provisioner.error.ClientError

Message: Unauthorized access to <url>, include valid token.

Code: 401

Troubleshoot: Try requesting a new token.

Design Errors

	Exception Name

	Description

	DesignError

	
	
exception drydock_provisioner.error.DesignError

	Bases: Exception

Message: Invalid Network model.

Troubleshoot:

Message: Network <network_key> not found in design state.

Troubleshoot:

Message: Design <design_id> not found.

Troubleshoot:

	IngesterError

	
	
exception drydock_provisioner.error.IngesterError

	Bases: drydock_provisioner.error.DesignError

Message: Error parsing YAML <various>.

Troubleshoot:

	InvalidDesignReference

	
	
exception drydock_provisioner.error.InvalidDesignReference

	Bases: drydock_provisioner.error.DesignError

Message: Invalid reference scheme <design_url.scheme>: no handler.

Troubleshoot:

Message: Cannot resolve design reference <design_ref>: unable to
parse as valid URI.

Troubleshoot:

Driver Errors

	Exception Name

	Description

	DriverError

	
	
exception drydock_provisioner.error.DriverError

	Bases: Exception

Message: Invalid task <task_id>.

Troubleshoot:

Message: Driver <driver_desc> doesn’t support task action <action>.

Troubleshoot:

Message: Fabric not found in MaaS for fabric_id <fabric_id>,
fabric_name <fabric_name>.

Troubeshoot:

Message: Cannot locate untagged VLAN on fabric <fabric_id>.

Troubleshoot:

Message: Error retrieving node/tag pairs, received HTTP
<resp.status_code> from MaaS.

Troubleshoot:

Message: Tag <res.name> already exists.

Troubleshoot:

Message: Error resetting network on node <resource_id>:
<resp.status_code>, <resp.text>.

Troubleshoot:

Message: “Error: cannot find storage device <root_device> to set as
root device.

Troubleshoot:

Message: Error: failed configuring node <resource_id> storage layout:
<various>.

Troubleshoot:

Message: Error commissioning node, received HTTP <resp.status_code>
from MaaS.

Troubleshoot:

Message: Error deploying node, received HTTP <resp.status_code> from
MaaS.

Troubleshoot:

Message: Error setting node metadata, received HTTP <resp.status_code>
from MaaS.

Troubleshoot:

Message: Node <node_name> not found.

Troubleshoot:

Message: Node <node_name> status ‘<node.status_name>’ does not allow
deployment, should be ‘Ready’.

Troubleshoot:

Message: Error acquiring node, MaaS returned <resp.status_code>.

Troubleshoot:

Message: Failed updating MAAS url <url> - return code
<resp.status_code>.

Troubleshoot:

Message: Node OOB type is not IPMI.

Troubleshoot:

Message: Node <node_name> has no IPMI address.

Troubleshoot:

Message: IPMI command failed.

Troubleshoot:

Message: Unsupported action <task_action> for driver <driver_desc>.

Troubleshoot:

Message: Failed updating MAAS url <url> - return code
<resp.status_code> <resp.text>

Troubleshoot:

Message: Invalid JSON for class <class_name>.

Troubleshoot:

Message: Error: Could not create logical volume <various>.

Troubleshoot:

Message: Error: Could not delete logical volume <various>.

Troubleshoot:

Message: Inconsistent data from MaaS.

Troubleshoot:

	InvalidSizeFormat

	
	
exception drydock_provisioner.error.InvalidSizeFormat

	Bases: drydock_provisioner.error.DriverError

Message: Invalid size string format: <size of string>

Troubleshoot: Coming Soon

Message: Sizes using the “>” or “%” format must specify a block device
or volume group context

Troubleshoot: Coming Soon

	NotEnoughStorage

	
	
exception drydock_provisioner.error.NotEnoughStorage

	Bases: drydock_provisioner.error.DriverError

Message: The calcuted size is not available.

Troubleshoot: Coming Soon

	PersistentDriverError

	
	
exception drydock_provisioner.error.PersistentDriverError

	Bases: drydock_provisioner.error.DriverError

Message: Recieved unexpected error from MaaS

Troubleshoot: Coming Soon

Message: Error accessing MaaS: <details>

Troubleshoot: Coming Soon

Message: MaaS API Authentication Failed

Troubleshoot: Coming Soon

	TransientDriverError

	
	
exception drydock_provisioner.error.TransientDriverError

	Bases: drydock_provisioner.error.DriverError

Message: Timeout connection to MaaS

Troubleshoot: Coming Soon

Message: Recieved 50x error from MaaS

Troubleshoot: Coming Soon

Orchestrator Errors

	Exception Name

	Description

	MaxRetriesReached

	
	
exception drydock_provisioner.error.MaxRetriesReached

	Bases: drydock_provisioner.error.OrchestratorError

Message: Retries reached max attempts.

Troubleshoot:

	OrchestratorError

	
	
exception drydock_provisioner.error.OrchestratorError

	Bases: Exception

Message: Could find task <task_id>.

Troubleshoot:

Message: Unable to render effective site design.

Troubleshoot:

Message: Cannot specify both failures and successes.

Troubleshoot:

Message: Unknow filter set type.

Troubleshoot:

Message: Error processing node filter.

Troubleshoot:

Message: Orchestrator requires instantiated state manager and
ingester.

Troubleshoot:

BuildData Errors

	Exception Name

	Description

	BuildDataError

	
	
exception drydock_provisioner.error.BuildDataError

	Bases: Exception

Message: *Error saving build data - data_element type <data_element>
could not be cast to string.

Troubleshoot:

Message: Error selecting build data.

Troubleshoot:

Drydock API

The Drydock API is a RESTful interface used for accessing the services provided by Drydock.
All endpoints are located under /api/<version>/.

Secured endpoints require Keystone authentication and proper role assignment for authorization

v1.0

tasks API

The Tasks API is used for creating and listing asynchronous tasks to be executed by the
Drydock orchestrator. See Tasks for details on creating tasks and field information.

nodes API

GET nodes

The Nodes API will provide a report of current nodes as known by the node provisioner
and their status with a few hardware details.

GET nodes/hostname/builddata

Get all the build data record for node hostname. The response will be a list of
objects in the below form.:

{
 "node_name": "hostname",
 "generator": "description of how data was generated",
 "collected_date": ios8601 UTC datestamp,
 "task_id": "UUID of task initiating collection",
 "data_format": "MIME-type of data_element",
 "data_element": "Collected data"
}

If the query parameter latest is passed with a value of true, then only
the most recently collected data for each generator will be included in the
response.

nodefilter API

POST nodefilter

The Nodes API will provide a list of node names based on design_ref. This API
requires design_ref in the POST body with an optional node_filter to return the node
names.

bootdata

The boot data API is used by deploying nodes to load the appropriate boot actions to be
instantiated on the node. It uses alternative authentication and is not accessible with
Keystone.

GET bootdata/hostname/files

Returns a gzipped tar file containing all the file-type boot action data assets for
the node hostname with appropriate permissions set in the tar-file.

GET bootdata/hostname/units

Returns a gzipped tar file containing all the unit-type boot action data assets for
the node hostname with appropriate permissions set in the tar-file.

bootaction API

The boot action API is used by deploying nodes to report status and results of running
boot actions. It expects a JSON-formatted body with the top-level entity of an object.
The status of the boot action and any detail status messages for it will be added to the
DeployNode task that prompted the node deployment the boot action is associated with.

POST bootaction/bootaction-id

Example:

{
 "status": "Failure"|"Success",
 "details": [
 {
 "message": "Boot action status message",
 "error": true|false,
 ...
 },
 ...
]
}

POSTs to this endpoint can be made repeatedly omitting the status field and simply
adding one or more detail status messages. The message and error fields are required and
the context, context_type and ts fields are reserved. Otherwise the message
object in details can be extended with additional fields as needed.

Once a POST containing the status field is made to a bootaction-id, that bootaction-id can no
longer be updated with status changes nor additional detailed status messages.

validatedesign API

The Validatedesign API is used for validating documents before they will be used by Drydock. See
Validate Design for more details on validating documents.

Tasks

Tasks are requests for Drydock to perform an action asynchronously. Depending on the
action being requested, tasks could take seconds to hours to complete. When a task is
created, a identifier is generated and returned. That identifier can be used to poll
the task API for task status and results.

Task Document Schema

This document can be posted to the Drydock tasks API to create a new task.:

{
 "action": "validate_design|verify_site|prepare_site|verify_node|prepare_node|deploy_node|destroy_node",
 "design_ref": "http_uri|deckhand_uri|file_uri",
 "node_filter": {
 "filter_set_type": "intersection|union",
 "filter_set": [
 {
 "filter_type": "intersection|union",
 "node_names": [],
 "node_tags": [],
 "node_labels": {},
 "rack_names": [],
 "rack_labels": {},
 }
]
 }
}

The filter is computed by taking the set of all defined nodes. Each filter in the filter set is applied
by either finding the union or intersection of filtering the full set of nodes by the attribute values
specified. The result set of each filter is then combined as either an intersection or union with that result
being the final set the task is executed against.

Assuming you have a node inventory of:

[
 {
 "name": "a",
 "labels": {
 "type": "physical",
 "color": "blue"
 }
 },
 {
 "name": "b",
 "labels": {
 "type": "virtual",
 "color": "yellow"
 }
 },
 {
 "name": "c",
 "labels": {
 "type": "physical",
 "color": "yellow"
 }
 }

Example:

"filter_set": [
 {
 "filter_type": "intersection",
 "node_labels": {
 "color": "yellow",
 "type": "physical"
 }
 },
 {
 "filter_type": "intersection",
 "node_names": ["a"]
 }
],
"filter_set_type": "union"

The above filter set results in a set a and c.

Task Status Schema

When querying the state of an existing task, the below document will be returned:

{
 "Kind": "Task",
 "apiVersion": "v1.0",
 "task_id": "uuid",
 "action": "validate_design|verify_site|prepare_site|verify_node|prepare_node|deploy_node|destroy_node",
 "design_ref": "http_uri|deckhand_uri|file_uri",
 "parent_task_id": "uuid",
 "subtask_id_list": ["uuid","uuid",...],
 "status": "requested|queued|running|terminating|complete|terminated",
 "node_filter": {
 "filter_set_type": "intersection|union",
 "filter_set": [
 {
 "filter_type": "intersection|union",
 "node_names": [],
 "node_tags": [],
 "node_labels": {},
 "rack_names": [],
 "rack_labels": {},
 }
]
 },
 "created": iso8601 UTC timestamp,
 "created_by": "user",
 "updated": iso8601 UTC timestamp,
 "terminated": iso8601 UTC timestamp,
 "terminated_by": "user",
 "result": Status object
}

The Status object is based on the UCP standardized response format:

{
 "Kind": "Status",
 "apiVersion": "v1",
 "metadata": {},
 "message": "Drydock Task ...",
 "reason": "Failure reason",
 "status": "failure|success|partial_success|incomplete",
 "details": {
 "errorCount": 0,
 "messageList": [
 StatusMessage
]
 }
}

The StatusMessage object will change based on the context of the message, but will at a minimum
consist of the below:

{
 "message": "Textual description",
 "error": true|false,
 "context_type": "site|network|node",
 "context": "site_name|network_name|node_name",
 "ts": iso8601 UTC timestamp,
}

Task Build Data

When querying the detail state of an existing task, adding the parameter builddata=true
in the query string will add one additional field with a list of build data elements
collected by this task.:

{
 "Kind": "Task",
 "apiVersion": "v1",

 "build_data": [
 {
 "node_name": "foo",
 "task_id": "uuid",
 "collected_data": iso8601 UTC timestamp,
 "generator": "lshw",
 "data_format": "application/json",
 "data_element": "{ \"id\": \"foo\", \"class\": \"system\" ...}"
 }
]

Adding the parameter subtaskerrors=true in the query string will add one additional field
with an object of subtask errors keyed by task_id.

Adding the parameter layers=x where x is -1 for all or a positive number to limit the number
of layers. Will convert the response into an object of tasks and all subtasks keyed by task_id.
It will also include the field init_task_id with the top task_id.

Boot Actions

Boot actions can be more accurately described as post-deployment file placement. This file placement
can be leveraged to install actions for servers to take after the permanent OS is installed
and the server is rebooted. Including custom or vendor scripts and a SystemD service to run the
scripts on first boot or on all boots allows almost any action to be configured.

Boot Action Schema

Boot actions are configured via YAML documents included in the site topology definition. The schema
for these YAML documents is described below.

data:
 signaling: true
 assets:
 - path: /save/file/here
 location: http://get.data.here/data
 type: unit|file|pkg_list
 data: |
 inline data here
 location_pipeline:
 - template
 data_pipeline
 - base64_decode
 - template
 - base64_encode
 permissions: 555
 node_filter:
 ...

signaling is a boolean noting whether Drydock should expect a signal at the completion
of this boot action. If set to true for a boot action that does not send a signal, it
will elongate the deployment step and consider the boot action failed.

assets is a list of data assets. More details below on how each data asset is rendered.

node_filter is an optional filter for selecting to which nodes this boot action will apply.
If no node filter is included, all nodes will receive the boot action. Otherwise it will be
only the nodes that match the logic of the filter set. See Tasks for a definition of
the node filter.

Rendering Data Assets

The boot action framework supports assets of several types. type can be unit or file or pkg_list.

	unit is a SystemD unit, such as a service, that will be saved to path and enabled via systemctl enable [filename].

	file is simply saved to the filesystem at path and set with permissions.

	pkg_list is a list of packages, one per line, that will be installed via apt.

Data assets of type unit or file will be rendered and saved as files on disk and assigned
the permissions as sepcified. The rendering process can follow a few different paths.

Referenced vs Inline Data

The asset contents can be sourced from either the in-document data field of the asset
mapping or dynamically generated by requesting them from a URL provided in location.
Currently Drydock supports the schemes of http, deckhand+http and
promenade+http for referenced data.

Pipelines

The boot action framework supports pipelines to allow for some dynamic rendering. There
are separate pipelines for the location field to build the URL that referenced assets should
be sourced from and the data field (or the data sourced from resolving the location field).

The location string will be passed through the location_pipeline before it is queried. This response
or the data field will then be passed through the data_pipeline. The data entity will start the pipeline
as a bytestring meaning if it is defined in the data field, it will first be encoded into a bytestring.
Below are pipeline segments available for use.

	base64_decode

	Decode the data element from base64

	base64_encode

	Encode the data element in base64

	utf8_decode

	Decode the data element from bytes to UTF-8 string

	utf8_encode

	Encode the data element from a UTF-8 string to bytes

	template

	Treat the data element as a Jinja2 template and apply a node context to it. The defined context available
to the template is below.

	node.network.[network_name].ip - IP address of this node on network [network_name]

	node.network.[network_name].cidr - CIDR of [network_name]

	node.network.[network_name].dns_suffix - DNS suffix of [network_name]

	node.hostname - Hostname of the node

	node.tags - Sequence of tags assigned to this node

	node.labels - Key, value pairs of both explicit and dynamic labels for this node

	action.key - A key that uniquely identifies this boot action on this node. Can be used for signaling boot action result.

	action.report_url - The URL that can be POSTed to for reporting boot action result.

	action.design_ref - The design reference for the deployment that initiated the bootaction

Also available in the Jinja2 template is the urlencode filter to encode a string for inclusion
in a URL.

Reporting Results

The assets put in place on a server can report the results of applying the boot action using the Drydock bootaction API. The
report API URL and boot action key are both available via the template pipeline segment context. It is up to the boot action
assets to implement the call back to the API for reporting whatever data the boot action desires.

Validate Design

The Drydock Validation API is a set of logic checks that must be passed before any information from the YAMLs will be
processed by Drydock. These checks are performed synchronously and will return a message list with a success or
failures for each check.

Formatting

This document can be POSTed to the Drydock validatedesign to validate a set of documents that have been
processed by Deckhand:

{
 rel : "design",
 href: "deckhand+https://{{deckhand_url}}/revisions/{{revision_id}}/rendered-documents",
 type: "application/x-yaml"
}

v1.0

Validation Checks

These checks are meant to check the business logic of documents sent to the validatedesign API.

	
class drydock_provisioner.orchestrator.validations.validator.Validator(orchestrator)

	
	
validate_design(site_design, result_status=None, include_output=False)

	Validate the design in site_design passes all validation rules.

Apply all validation rules to the design in site_design. If result_status is
defined, update it with validation messages. Otherwise a new status instance
will be created and returned.

	Parameters

	
	site_design – instance of objects.SiteDesign

	result_status – instance of objects.TaskStatus

drydock_client - client for drydock_provisioner RESTful API

The drydock_client module can be used to access a remote (or local)
Drydock REST API server. It supports tokenized authentication and
marking API calls with an external context marker for log aggregation.

It is composed of two parts - a DrydockSession which denotes the call
context for the API and a DrydockClient which gives access to actual
API calls.

Simple Usage

The usage pattern for drydock_client is to build a DrydockSession
with your credentials and the target host. Then use this session
to build a DrydockClient to make one or more API calls. The
DrydockSession will care for TCP connection pooling and header
management:

import drydock_provisioner.drydock_client.client as client
import drydock_provisioner.drydock_client.session as session

dd_session = session.DrydockSession('host.com', port=9000, token='abc123')
dd_client = client.DrydockClient(dd_session)

drydock_task = dd_client.get_task('ba44e582-6b26-11e7-81cc-080027ef795a')

Drydock Client Method API

drydock_client.client.DrydockClient supports the following methods for
accessing the Drydock RESTful API

get_design_ids

Return a list of UUID-formatted design IDs

get_design

Provide a UUID-formatted design ID, receive back a dictionary representing
an objects.site.SiteDesign instance. You can provide the kwarg ‘source’ with
the value of ‘compiled’ to see the site design after inheritance is applied.

create_design

Create a new design. Optionally provide a new base design (by UUID-formatted
design_id) that the new design uses as the starting state. Receive back a
UUID-formatted string of design_id

get_part

Get the attributes of a particular design part. Provide the design_id the part
is loaded in, the kind (one of Region, NetworkLink, Network,
HardwareProfile, HostProfile or BaremetalNode and the part key
(i.e. name). You can provide the kwarg ‘source’ with the value of ‘compiled’ to
see the site design after inheritance is applied.

load_parts

Parse a provided YAML string and load the parts into the provided design context

get_tasks

Get a list of all task ids

get_task

Get the attributes of the task identified by the provided task_id

create_task

Create a task to execute the provided action on the provided design context

Authoring Site Topology

Drydock uses a YAML-formatted site topology definition to configure
downstream drivers to provision baremetal nodes. This topology describes
the networking configuration of a site as well as the set of node configurations
that will be deployed. A node configuration consists of network attachment,
network addressing, local storage, kernel selection and configuration and
metadata.

The best source for a sample of the YAML schema for a topology is the unit
test input source in
./tests/yaml_samples/fullsite.yaml.

Defining Networking

Network definitions in the topology are described by two document types:
NetworkLink and Network. NetworkLink describes a physical or logical link
between a node and switch. It is concerned with attributes that must be agreed
upon by both endpoints: bonding, media speed, trunking, etc. A Network describes
the layer 2 and layer 3 networks accessible over a link.

Network Links

The NetworkLink document defines layer 1 and layer 2 attributes that should be
in-sync between the node and the switch. Each link can support a single untagged
VLAN and 0 or more tagged VLANs.

Example YAML schema of the NetworkLink spec:

spec:
 bonding:
 mode: 802.3ad
 hash: layer3+4
 peer_rate: slow
 mtu: 9000
 linkspeed: auto
 trunking:
 mode: 802.1q
 allowed_networks:
 - public
 - mgmt

bonding describes combining multiple physical links into a single logical
link (aka LAG or link aggregation group).

	mode: What bonding mode to configure

	disabled: Do not configure a bond

	802.3ad: Use 802.3ad dynamic aggregation (aka LACP)

	active-backup: Use static active/standby bonding

	balanced-rr: Use static round-robin bonding

For a mode of 802.3ad the optional attributes below are available:

	hash: The link selection hash. Supported values are layer3+4,
layer2+3, layer2. Default is layer3+4

	peer_rate: How frequently to send LACP control frames. Supported values
are fast and slow. Default is fast

	mon_rate: Interval between checking link state in milliseconds.
Default is 100

	up_delay: Delay in milliseconds between a link coming up and being marked
up in the bond. Must be greater than mon_rate. Default is 200

	down_delay: Delay in milliseconds between a link going down and being
marked down in the bond. Must be greater than mon_rate.
Default is 200

mtu is the maximum transmission unit for the link. It must be equal or
greater than the MTU of any VLAN interfaces using the link. Default is 1500.

linkspeed is the physical layer speed and duplex. Recommended to always be
auto

trunking describes how multiple layer 2 networks will be multiplexed on the
link.

	mode: Can be disabled for no trunking or 802.1q for standard
VLAN tagging

	default_network: For mode: disabled, this is the single network on
the link. For mode: 802.1q this is optionally the network accessed by
untagged frames.

allowed_networks is a sequence of network names listing all networks allowed
on this link. Each Network can be listed on one and only one NetworkLink.

Network

The Network document defines the layer 2 and layer 3 networks nodes will access.
Each Network is accessible over exactly one NetworkLink. However that
NetworkLink can be attached to different interfaces on different nodes to
support changing hardware configurations.

Example YAML schema of the Network spec:

spec:
 vlan: '102'
 mtu: 1500
 cidr: 172.16.3.0/24
 routedomain: storage
 ranges:
 - type: static
 start: 172.16.3.15
 end: 172.16.3.200
 - type: dhcp
 start: 172.16.3.201
 end: 172.16.3.254
 routes:
 - subnet: 0.0.0.0/0
 gateway: 172.16.3.1
 metric: 10
 - gateawy: 172.16.3.2
 metric: 10
 routedomain: storage
 dns:
 domain: sitename.example.com
 servers: 8.8.8.8

If a Network is accessible over a NetworkLink using 802.1q VLAN tagging, the
vlan attribute specified the VLAN tag for this Network. It should be omitted
for non-tagged Networks.

mtu is the maximum transmission unit for this Network. Must be equal or less
than the mtu defined for the hosting NetworkLink. Can be omitted to default
to the NetworkLink mtu.

cidr is the classless inter-domain routing address for the network.

routedomain is a logical grouping of L3 networks such that a network that
describes a static route for accessing the route domain will yield a list of
static routes for all the networks in the routedomain. See the description
of routes below for more information.

ranges defines a sequence of IP addresses within the defined cidr.
Ranges cannot overlap.

	type: The type of address range.

	static: A range used for static, explicit address assignments for
nodes.

	dhcp: A range used for assigning DHCP addresses. Note that a network
being used for PXE booting must have a DHCP range defined.

	reserved: A range of addresses that will not be used by MaaS.

	start: The starting IP of the range, inclusive.

	end: The last IP of the range, inclusive

routes defines a list of static routes to be configured on nodes attached to
this network. The routes can defined in one of two ways: an explicit destination
subnet where the route will be configured exactly as described or a destination
routedomain where Drydock will calculate all the destination L3 subnets for the
routedomain and add routes for each of them using the gateway and metric
defined.

	subnet: Destination CIDR for the route

	gateway: The gateway IP on this Network to use for accessing the destination

	metric: The metric or weight for this route

	
	routedomain: Use this route’s gateway and metric for accessing networks in the

	defined routedomain.

dns is used for specifying the list of DNS servers to use if this network
is the primary network for the node.

	servers: A comma-separated list of IP addresses to use for DNS resolution

	domain: A domain that can be used for automated registration of IP
addresses assigned from this Network

DHCP Relay

DHCP relaying is used when a DHCP server is not attached to the same layer 2
broadcast domain as nodes that are being PXE booted. The DHCP requests from the
node are consumed by the relay (generally configured on a top-of-rack switch)
which then encapsulates the request in layer 3 routing and sends it to an
upstream DHCP server. The Network spec supports a dhcp_relay key for
Networks that should relay DHCP requests.

	The Network must have a configured DHCP relay, this is not configured by
Drydock or MaaS.

	The upstream_target IP address must be a host IP address for a MaaS rack
controller

	The Network must have a defined DHCP address range.

	The upstream target network must have a defined DHCP address range.

The dhcp_relay stanza:

dhcp_relay:
 upstream_target: 172.16.4.100

Defining Node Configuration

Node configuration is defined in three documents: HostProfile,
HardwareProfile and BaremetalNode. HardwareProfile defines
attributes directly related to hardware configuration such as card-slot layout
and firmware levels. HostProfile is a generic definition for how a node
should be configured such that many nodes can reference a single HostProfile
and each will be configured identically. A BaremetalNode is a concrete
reference to the particular physical node. The BaremetalNode definition will
reference a HostProfile and can then extend or override any of the
configuration values.

NOTE: Drydock does not support hostnames containing ‘__’ (double underscoe)

Hardware Profile

The hardware profile is used to convert some abstractions in the HostProfile documents
into concrete configurations based a particular hardware build. A host profile will
designate how the bootdisk should be configured, but the hardware profile will
designate which exact device is used for the bootdisk. This allows a heterogeneous mix
of hardware in a site without duplicating definitions of how that hardware should
be configured.

An example HardwareProfile document:

schema: 'drydock/HardwareProfile/v1'
metadata:
 schema: 'metadata/Document/v1'
 name: AcmeServer
 storagePolicy: 'cleartext'
 labels:
 application: 'drydock'
data:
 vendor: HP
 generation: '8'
 hw_version: '3'
 bios_version: '2.2.3'
 boot_mode: bios
 bootstrap_protocol: pxe
 pxe_interface: 0
 device_aliases:
 prim_nic01:
 address: '0000:00:03.0'
 dev_type: '82540EM Gigabit Ethernet Controller'
 bus_type: 'pci'
 prim_nic02:
 address: '0000:00:04.0'
 dev_type: '82540EM Gigabit Ethernet Controller'
 bus_type: 'pci'
 primary_boot:
 address: '2:0.0.0'
 dev_type: 'VBOX HARDDISK'
 bus_type: 'scsi'
 cpu_sets:
 sriov: '2,4'
 hugepages:
 sriov:
 size: '1G'
 count: 300
 dpdk:
 size: '2M'
 count: 530000

Device Aliases

Device aliases are a way of mapping a particular device bus address
to an alias. In the example above we map the PCI address 0000:00:03.0
to the alias prim_nic01. A host profile or baremetal node definition
can then provide a configuration using prim_nic01 and Drydock will
translate that to the correct operating system device name for the NIC device
at PCI address 0000.00.03.0. Currently device aliases are supported
for network interface slave devices and storage physical devices.

Kernel Parameter References

Some kernel parameters specified in a host profile rely on particular hardware
builds, such as isolcpus. To support the greatest flexibility in building
host profiles, you can specify a few values in a hardware profile that will then
be sourced when needed by a host profile or baremetal node definition.

	cpu_sets: Each key should have a value of a comma-separated list of CPUs/cores/hyperthreads
that would be appropriate for the isolcpus kernel parameters. A host profile can
then select any one of these CPU sets for a host.

	hugepages: Each key should have a value of a mapping containing two keys: size and
count. Again, a host profile can then select these values when defining kernel parameters
for a host. Note the size field is a string and will be used as-is, so the format must
be usable by the kernel.

Host Profiles and Baremetal Nodes

Example HostProfile and BaremetalNode configuration:

apiVersion: 'drydock/v1'
kind: HostProfile
metadata:
 name: defaults
 region: sitename
 date: 17-FEB-2017
 author: sh8121@att.com
spec:
 # configuration values

apiVersion: 'drydock/v1'
kind: HostProfile
metadata:
 name: compute_node
 region: sitename
 date: 17-FEB-2017
 author: sh8121@att.com
spec:
 host_profile: defaults
 # compute_node customizations to defaults

apiVersion: 'drydock/v1'
kind: BaremetalNode
metadata:
 name: compute01
 region: sitename
 date: 17-FEB-2017
 author: sh8121@att.com
spec:
 host_profile: compute_node
 # configuration customization specific to single node compute01

In the above example, the compute_node HostProfile adopts all values from
the defaults HostProfile and can then override defined values or append
additional values. BaremetalNode compute01 then adopts all values from the
compute_node HostProfile (which includes all the configuration items it
adopted from defaults) and can then again override or append any
configuration that is specific to that node.

Defining Node Interfaces and Network Addressing

Node network attachment can be described in a HostProfile or a
BaremetalNode document. Node addressing is allowed only in a
BaremetalNode document. If a HostProfile or BaremetalNode needs to
remove a defined interface from an inherited configuration, it can set the
mapping value for the interface name to null.

Once the interface attachments to networks is defined, HostProfile and
BaremetalNode specs must define a primary_network attribute to denote
which network the node should use as the primary route.

Interfaces

Interfaces for a node can be described in either a HostProfile or
BaremetalNode definition. This will attach a defined NetworkLink to a host
interface and define which Networks should be configured to use that interface.

Example interface definition YAML schema:

interfaces:
 pxe:
 device_link: pxe
 labels:
 pxe: true
 slaves:
 - prim_nic01
 networks:
 - pxe
 bond0:
 device_link: gp
 slaves:
 - prim_nic01
 - prim_nic02
 networks:
 - mgmt
 - private

Each key in the interfaces mapping is a defined interface. The key is the name
that will be used on the deployed node for the interface. The value must be a
mapping defining the interface configuration or null to denote removal of
that interface for an inherited configuration.

	device_link: The name of the defined NetworkLink that will be attached to
this interface. The NetworkLink definition includes part of the interface
configuration such as bonding.

	labels: Metadata for describing this interface.

	slaves: The list of hardware interfaces used for creating this interface.
This value can be a device alias defined in the HardwareProfile or the kernel
name of the hardware interface. For bonded interfaces, this would list all the
slaves. For non-bonded interfaces, this should list the single hardware
interface used.

	networks: This is the list of networks to enable on this interface. If
multiple networks are listed, the NetworkLink attached to this interface must
have trunking enabled or the design validation will fail.

Addressing

Addressing for a node can only be defined in a BaremetalNode definition. The
addressing stanza simply defines a static IP address or dhcp for each
network a node should have a configured layer 3 interface on. It is a valid
design to omit networks from the addressing stanza, in that case the
interface attached to the omitted network will be configured as link up with no
address.

Example addressing YAML schema:

addressing:
 - network: pxe
 address: dhcp
 - network: mgmt
 address: 172.16.1.21
 - network: private
 address: 172.16.2.21
 - network: oob
 address: 172.16.100.21

Defining Node Storage

Storage can be defined in the storage stanza of either a HostProfile or
BaremetalNode document. The storage configuration can describe the creation of
partitions on physical disks, the assignment of physical disks and/or partitions
to volume groups, and the creation of logical volumes. Drydock will make a best
effort to parse out system-level storage such as the root filesystem or boot
filesystem and take appropriate steps to configure them in the active node
provisioning driver. At a minimum, the storage configuration must contain
a root filesystem partition.

Example YAML schema of the storage stanza:

storage:
 physical_devices:
 sda:
 labels:
 bootdrive: true
 partitions:
 - name: 'root'
 size: '10g'
 bootable: true
 filesystem:
 mountpoint: '/'
 fstype: 'ext4'
 mount_options: 'defaults'
 - name: 'boot'
 size: '1g'
 filesystem:
 mountpoint: '/boot'
 fstype: 'ext4'
 mount_options: 'defaults'
 sdb:
 volume_group: 'log_vg'
 volume_groups:
 log_vg:
 logical_volumes:
 - name: 'log_lv'
 size: '500m'
 filesystem:
 mountpoint: '/var/log'
 fstype: 'xfs'
 mount_options: 'defaults'

Schema

The storage stanza can contain two top-level keys: physical_devices and
volume_groups. The latter is optional.

Physical Devices and Partitions

A physical device can either be carved up in partitions (including a single
partition consuming the entire device) or added to a volume group as a physical
volume. Each key in the physical_devices mapping represents a device on a
node. The key should either be a device alias defined in the HardwareProfile or
the name of the device published by the OS. The value of each key must be a
mapping with the following keys

	labels: A mapping of key/value strings providing generic labels for the
device

	partitions: A sequence of mappings listing the partitions to be created on
the device. The mapping is described below. Incompatible with the
volume_group specification.

	volume_group: A volume group name to add the device to as a physical
volume. Incompatible with the partitions specification.

Partition

A partition mapping describes a GPT partition on a physical disk. It can be left
as a raw block device or formatted and mounted as a filesystem.

	name: Metadata describing the partition in the topology

	size: The size of the partition. See the Size Format section below

	bootable: Boolean whether this partition should be the bootable device

	part_uuid: A UUID4 formatted UUID to assign to the partition. If not
specified one will be generated

	filesystem: An optional mapping describing how the partition should be
formatted and mounted

	mountpoint: Where the filesystem should be mounted. If not specified
the partition will be left as a raw device

	fstype: The format of the filesystem. Defaults to ext4

	mount_options: fstab style mount options. Default is ‘defaults’

	fs_uuid: A UUID4 formatted UUID to assign to the filesystem. If not
specified one will be generated

	fs_label: A filesystem label to assign to the filesystem. Optional.

Size Format

The size specification for a partition or logical volume is formed from three
parts:

	The first character can optionally be > indicating that the size specified
is a minimum and the calculated size should be at least the minimum and should
take the rest of the available space on the physical device or volume group.

	The second part is the numeric portion and must be an integer

	The third part is a label

	m|M|mb|MB: Megabytes or 10^6 * the numeric

	g|G|gb|GB: Gigabytes or 10^9 * the numeric

	t|T|tb|TB: Terabytes or 10^12 * the numeric

	%: The percentage of total device or volume group space

Volume Groups and Logical Volumes

Logical volumes can be used to create RAID-0 volumes spanning multiple physical
disks or partitions. Each key in the volume_groups mapping is a name
assigned to a volume group. This name must be specified as the volume_group
attribute on one or more physical devices or partitions or the configuration is
invalid. Each mapping value is another mapping describing the volume group.

	vg_uuid: A UUID4 format uuid applied to the volume group. If not
specified, one is generated

	logical_volumes: A sequence of mappings listing the logical volumes to be
created in the volume group

Logical Volume

A logical volume is a RAID-0 volume. Using logical volumes for / and
/boot is supported

	name: Required field. Used as the logical volume name.

	size: The logical volume size. See Size Format above for details.

	lv_uuid: A UUID4 format uuid applied to the logical volume: If not
specified, one is generated

	filesystem: A mapping specifying how the logical volume should be
formatted and mounted. See the Partition section above for filesystem
details.

Platform Configuration

In the platform stanza you can define the operating system image
and kernel to use as well as customize the kernel configuration with
kernel_params.

The valid image and kernel values are dependent on what is supported
by your node provisioner. In the example of Canonical MaaS using the 16.04 LTS
image, the values would be image: 'xenial' and kernel: 'ga-16.04' for the
LTS kernel or kernel: hwe-16.04 for the hardware-enablement kernel.

The kernel_params configuration is a mapping. Each key should either be a string
or boolean value. For boolean true values, the key will be added to the kernel
parameter list as a flag. For string values, the key:value pair will be added to the
kernel parameter list as key=value.

One special case is supported for values that match a hardware profile reference.
When the parameter is rendered for a particular node, the value included in the
kernel parameter list will be sourced from the effective HardwareProfile assigned
to the node.

	hardwareprofile:cpuset.<name>: Sourced from the hardware profile cpu_sets.<name>
value.

	hardwareprofile.hugepages.<name>.size: Source from the hardware profile
hugepages.<name>.size value.

	hardwareprofile.hugepages.<name>.count: Source from the hardware profile
hugepages.<name>.count value.

Index

 B
 | C
 | D
 | I
 | M
 | N
 | O
 | P
 | T
 | U
 | V

B

 	
 	BuildDataError

C

 	
 	ClientError

 	
 	ClientForbiddenError

 	ClientUnauthorizedError

D

 	
 	DesignError

 	
 	DriverError

I

 	
 	IngesterError

 	InvalidAssetLocation

 	
 	InvalidDesignReference

 	InvalidFormat

 	InvalidSizeFormat

M

 	
 	MaxRetriesReached

N

 	
 	NotEnoughStorage

O

 	
 	OrchestratorError

P

 	
 	PersistentDriverError

 	
 	PipelineFailure

T

 	
 	TransientDriverError

U

 	
 	UnknownPipelineSegment

V

 	
 	validate_design() (drydock_provisioner.orchestrator.validations.validator.Validator method)

 	
 	Validator (class in drydock_provisioner.orchestrator.validations.validator)

Drydock Build Data

Some site data is not known before the deployment of physical nodes begins.
Currently there is no method to harvest and persist this data for later reporting
or usage downstream in the deployment process. This blueprint for adding Drydock
support for harvesting, persisting, and reporting this build-time data.

Overview

Build data is any data that is unknown until a site deployment actually begins. It
can be harvested any time during the deployment and will be persisted so that it
is available via the Drydock API for reporting. Each data element collected will
also be associated with the Drydock task that initiated the harvesting. When
requesting the details of the task, a client can optionally request the build data
harvested by that task directly be attached. Each build data element will be
described by the following fields.

	Date/time - Same type of data can be collected multiple times and archived.

	Task - The Drydock Task ID that initiated the collection.

	Node - The node on which the data is collected.

	
	Generator - A description of what generated the data. If it was a command line tool,

	the full command line. If it was something else, then a solid description
such as an API endpoint.

	Format - The format that the collected data is being persisted as.

Post-collection, the build data will be accessible in two ways

	Using the new builddata endpoint under the /nodes/ resource. See below for details.

	By requesting the details for the initiating task from the /api/v1.0/tasks
resource and including the builddata=true parameter to the request.

Currently no pruning system is in place, but if storage is a concern that can be
added as a follow-on feature.

Data Schema

A new table build_data with the following columns. No keys.

	task_id - 128-bit binary task ID of the Drydock task that collected the build data.

	collected_date - The datestamp when the data was collected.

	generator - Description of the command or source of the build data.

	node_name - The node the data is collected from.

	format - The MIME-type of the storage format of the persisted data.

	data_element - The data collected serialized in the format.

Build Data API

A new API endpoint of /api/v1.0/nodes/{node}/builddata/ will be added to the API
to retrieve the build data for a node. This endpoint will only support a GET request
and supports a single query parameter of latest which defaults to true. If true
then the response will contain only the most recent data_element for each generator.
If the parameter is false then the response will contain an ordered sequence of all
data_elements for each generator in a descending time series.

The existing /api/v1.0/tasks/{task_id}/ endpoint will be updated to support a query
parameter of builddata that defaults to false. If set to true, the response
with the task details will include any build data collected during the execution of the
task.

Expected Use Cases

Device Aliases

The first use case is collecting data from lshw to resolve device bus addresses
into operating system device names. This is done for supporting the device aliases
in the HardwareProfile.

Network Topology

During node deployment, LLDP (link level discovery protocol) can be used to validate
the network topology. The LLDP output can be collected and audited against expected
switch configurations.

Burn In Performance

New hardware can run burn-in routines to collect performance and stability information
before production workloads are installed.

Drydock Blueprints

These are solution designs for Drydock enhancements. They are split
between proposed and accepted. Accepted blueprint implementation can be queued,
in-progress or completed.

Proposed

	Drydock Build Data

Accepted

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Drydock’s documentation!

 		
 Installing Drydock in a Dev Environment

 		
 Bootstrap Kubernetes

 		
 Deploy Drydock and Dependencies

 		
 Load Site

 		
 Configuring Drydock

 		
 Keystone Integration

 		
 MaaS Integration

 		
 Sample Configuration File

 		
 Sample Policy File

 		
 Exceptions Guide

 		
 Drydock Exceptions

 		
 API Errors

 		
 Bootaction Errors

 		
 Client Errors

 		
 Design Errors

 		
 Driver Errors

 		
 Orchestrator Errors

 		
 BuildData Errors

 		
 Drydock API

 		
 v1.0

 		
 tasks API

 		
 nodes API

 		
 nodefilter API

 		
 bootdata

 		
 bootaction API

 		
 validatedesign API

 		
 Tasks

 		
 Task Document Schema

 		
 Task Status Schema

 		
 Task Build Data

 		
 Boot Actions

 		
 Boot Action Schema

 		
 Rendering Data Assets

 		
 Referenced vs Inline Data

 		
 Pipelines

 		
 Reporting Results

 		
 Validate Design

 		
 Formatting

 		
 v1.0

 		
 Validation Checks

 		
 drydock_client - client for drydock_provisioner RESTful API

 		
 Simple Usage

 		
 Drydock Client Method API

 		
 get_design_ids

 		
 get_design

 		
 create_design

 		
 get_part

 		
 load_parts

 		
 get_tasks

 		
 get_task

 		
 create_task

 		
 Authoring Site Topology

 		
 Defining Networking

 		
 Network Links

 		
 Network

 		
 Defining Node Configuration

 		
 Hardware Profile

 		
 Host Profiles and Baremetal Nodes

 		
 Platform Configuration

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

